Реклама

О возникновении и развитии жизни

 

На основании того, что было сказано в главе «Об определении понятия «жизнь»», мы можем с достаточной для наших целей строгостью и точностью определить «живое вещество» как такой сложный молекулярный агрегат, в котором имеется «управляющая система», включающая в себя механизм передачи наследственной информации, обеспечивающей сохраняющие реакции следующим поколениям. Тем самым благодаря неизбежным «помехам» при передаче такой информации наш молекулярный комплекс («организм») способен к мутациям, а следовательно, к эволюции.

Возникновению живого вещества на Земле (и, как можно судить по аналогии, на других планетах) предшествовала довольно длительная и сложная эволюция химического состава атмосферы; в конечном итоге приведшая к образованию органических молекул. Эти молекулы впоследствии послужили как бы «кирпичами» для образования живого вещества.

Коль скоро, согласно всем существующим космогоническим гипотезам, планеты образуются из первичной газопылевой субстанции, химический состав которой аналогичен химическому составу Солнца и звезд, первоначальная их атмосфера состояла в основном из простейших соединений водорода — наиболее обильного элемента в космосе. Больше всего было молекул Н2, Н2О, СО2, NH3 и СН4. Кроме того, первичная атмосфера должна была быть богата инертными газами, прежде всего гелием и неоном. Тот простой факт, что в настоящее время обилие благородных газов на Земле по сравнению с Солнцем ничтожно мало, означает, что они в свое время диссипировали в межпланетное пространство. (В земной атмосфере имеется довольно значительное количество (около 1%) аргона. Однако атмосферный аргон образовался позже в результате радиоактивного распада калия и никакого отношения к первоначальной атмосфере не имеет.)

Для понимания эволюции планетных атмосфер особенное значение имеет анализ содержания благородных газов и их изотопов в атмосферах планет земной  группы. Это следует из химической инертности этих газов в сочетании с тем, что тяготение планеты должно их удержать в атмосфере в течение всего времени эволюции атмосферы (за исключением легкого гелия). Выполненный советскими АМС изотопный анализ атмосферы Венеры дает для этого богатый материал. В приведенной ниже таблице дано относительное содержание разных изотопов благородных газов в атмосферах планет земной группы.

 

Планета

36A

(см3/г)

40A

—–

36A

40A

(см3/г)

36A

—–

38A

20Ne

(см3/г)

84Kr

(см3/г)

132Xe

(см3/г)

36A

—–

84Kr

Венера

2,2 • 10-6

1,2

2,6 • 10-6

5,0

5,3 • 10-7

2,6 • 10-8

120

Земля

2,1 • 10-8

296

6,2 • 10-6

5.0

1,1 • 10-8

4,3 • 10-10

1,6 • 10-4

49

Марс

1,0 • 10-10

3000

3,0, • 10-7

8,0 • 10-11

5,0 • 10-12

7,5 • 10-13

32

 

Обращает на себя внимание, что абсолютное содержание изотопа аргона 40А в атмосферах Земли и Венеры довольно близко. Так и должно быть, так как этот изотоп непрерывно образуется из изотопа калия, довольно обильного в коре обеих планет. Также понятно, почему в атмосфере Марса количество 40А на порядок меньше, чем в атмосферах Земли и Венеры — ведь масса Марса меньше. Совершенно неожиданно, однако, что «нерадиогенный» изотоп 36А в атмосфере Венеры так же обилен, как и радиогенный изотоп 40А. Между тем в атмосферах Земли и Марса обилие изотопа 36А в сотни раз меньше, чем 40А. Столь разительное различие должно иметь глубокий космогонический смысл, т. е. оно должно отражать условия образования планет солнечной системы и их атмосфер. М. Н. Изаков из наблюдаемого изотопного состава атмосфер «внутренних» планет делает весьма радикальный вывод, что атмосфера Венеры была «захвачена» из протопланетного облака, между тем как на Земле и особенно на Марсе основная часть атмосферы имеет вторичное происхождение и обусловлена «дегазацией» пород, образующих кору этих планет. Этот важный вывод нуждается, однако, в подтверждении.

Необходимо сразу же подчеркнуть, что современная атмосфера нашей Земли совершенно уникальна. Благодаря успехам космонавтики мы надежно знаем состав атмосфер всех планет земной группы. Сейчас мы только подчеркнем, что основным газом в современных атмосферах Марса и Венеры является углекислота (свыше 95%). Между тем свободного кислорода в чрезвычайно разреженной атмосфере Марса всего лишь 0,2%, а на Венере и того меньше.

В земной атмосфере углекислота составляет совершенно ничтожную долю — 0,032 %.(К сожалению, этот процент растет благодаря неконтролируемому промышленному развитию.) В то же время вулканическая деятельность нашей планеты (так же как Венеры и Марса) щедро поставляет в атмосферу СО2. Куда же исчез углекислый газ? Почему в атмосферах наших «соседей» по Солнечной системе он постепенно накопился, а у нас «исчез»? Углекислый газ удаляется из атмосферы Земли двумя процессами. Первый — это химические реакции с горными породами, в которых участвует жидкая вода. Второй — жизнедеятельность покрывающих всю нашу планету растений, которые, используя солнечную энергию с помощью хлорофилла, из нескольких молекул СО2 и Н2О синтезируют глюкозу. Освободившиеся молекулы кислорода при этом непрерывно поступают в атмосферу. Таким образом, в течение долгой истории Земли благодаря растениям земная атмосфера была практически «очищена» от CO2 и насыщена молекулами О2.

Кислород в земной атмосфере находится в состоянии динамического равновесия. Если бы не жизнедеятельность растений (они поставляют в атмосферу ежегодно 1011 тонн кислорода), исключительно активные молекулы этого элемента вступили бы в различные химические реакции и исчезли бы из нашей атмосферы за какие-нибудь 10000 лет! (Человечество варварски относится к сохранению этого чуда — насыщенной кислородом земной атмосферы. Сплошная вырубка лесов (особенно в Бразильской сельве), а также хаотическое промышленное развитие уже сейчас нарушили кислородный баланс нашей планеты. Можно, конечно, утешаться, что на несколько тысяч лет кислорода еще хватит. Однако существ, исповедывающих такую «философию» («после нас — хоть потоп»), вряд ли следует причислять к виду «Homo Sapiens».))

С точки зрения планетолога современная атмосфера Земли представляет собой «астрономический нонсенс» или, проще говоря, чудо. Это надо же — 21 % атмосферы состоит из немыслимо химически активного газа. И все это — результат развития жизни на нашей планете! Этот пример со всей наглядностью показывает как развитие жизни на планете приводит к космическим последствиям.

Сколько же времени на Земле существовала первичная атмосфера? Имеются довольно надежные геологические и геохимические данные, указывающие на то, что уже 3,5 млрд. лет назад земная атмосфера была довольно богата  кислородом. Жизнь должна была возникнуть на Земле задолго до того, как атмосфера стала богата кислородом, так как последний является продуктом жизнедеятельности растений.

Эта оценка следует из того, что самые древние из известных на Земле организмов — сине-зеленые водоросли имеют возраст вероятно 3,5 — 3,8 млрд. лет. Так как эти организмы довольно сложны, ясно, что от момента зарождения жизни на Земле до их возникновения прошло немало времени. Другими словами, уже на ранних фазах эволюции Земли на ней возникала жизнь.

Схематически путь эволюции органического вещества на Земле можно представить в виде следующей таблицы:

 

I

II

III

IV

V

Образование Земли

Возникновение живых систем.

Клетка

Эволюция одноклеточных.

Возникновение клеточной дифференциации

Эволюция многоклеточных

Человек

 

#  Развитие жизни на Земле можно приурочить к следующим эпохам:

1) жизнь появилась на очень раннем этапе истории нашей планеты (первые сотни миллионов лет);

2) биологическая эволюция от примитивных бактерий до развитой цивилизации продолжалась беспрецедентно долго (более 4 млрд. лет);

3) в процессе эволюции жизни атмосфера планеты из бескислородной стала кислородной.

 

(По современным данным возраст Вселенной около 15 млрд. лет. Земли — 4,5; фотосинтез и кислородная атмосфера возникли 3,5—3,8 млрд. лет назад, тогда же появились эукариотные организмы (т. е. состоящие из клеток с ядром), первые многоклеточные (без скелета, желеподобные) — 1 млрд. лет назад, первые организмы со скелетом — 600 млн. лет назад, выход жизни из моря — 400, первые млекопитающие — 65, обезьяны — 35, австралопитек — 3,5 млн. лет назад, кроманьонский человек — 40 тысяч лет назад.) 

Рассмотрим теперь более подробно начальные этапы этой эволюции. По-видимому, наибольшие загадки ставит перед нами переход от первой фазы эволюции ко второй.

В настоящее время накоплен значительный экспериментальный материал, иллюстрирующий, каким образом такие простые вещества, как вода, метан, аммиак, окись углерода, аммонийные и фосфатные соединения и др., превращаются в высокоорганизованные структуры, являющиеся основными строительными блоками клетки — единицы живого. Эти опыты, начатые впервые американскими учеными Кельвином, Миллером и Юри, положили начало новому научному направлению, получившему впоследствии название «пребиологической химии».

Так, например, опытами Миллера доказано, что при прохождении электрических разрядов через смесь метана (CH4), молекулярного водорода (Н2), аммиака (NH3) и паров воды (эта смесь довольно хорошо моделирует первичную атмосферу Земли) возникали глицин, аланин и другие аминокислоты, а также ряд органических соединений. Точно так же экспериментально доказано, что в такой смеси образование органических соединений (в частности, аминокислот) может происходить под воздействием ультрафиолетовой радиации. Можно полагать, что в условиях неокисленной земной атмосферы, когда ультрафиолетовое излучение Солнца беспрепятственно могло достигать земной поверхности (В настоящее время близкая ультрафиолетовая часть солнечного спектра поглощается озоном O3, а более далекая — молекулами кислорода О2 и азота N2), важная роль в образовании первых органических соединений принадлежала этому источнику энергии. В то же время серьезное значение могли иметь и другие источники энергии. Следует подчеркнуть, что уже первые попытки экспериментального изучения проблемы возникновения жизни на молекулярном уровне продемонстрировали возможность многочисленных «вариантов», которые могли иметь место в течение первого миллиарда лет истории Земли.

Таким образом, можно считать доказанным, что под воздействием различных форм энергии на примитивной Земле возникали достаточно сложно организованные органические молекулы.

В синтезе органики наиболее существенную роль должны были играть электрические разряды, ударные волны, ультрафиолетовое излучение Солнца, вулканическое тепло, радиоактивный распад 40К.

Из нижеприведенной таблицы видно, что основной вклад в процессы абиогенного синтеза вносит ультрафиолетовое излучение Солнца. Однако вопрос об относительной эффективности различных видов энергии не так прост, как это кажется на первый взгляд. В экспериментах по абиогенному синтезу были использованы все источники энергии, перечисленные в таблице. 6.  При этом выяснилось, что определяющим моментом является не общее количество энергии, а «к.п.д.» той или иной модели образования органических веществ.

 

Источник

Средняя энергия на всю поверхность Земли (в единицах 1020 кал/год)

Распад 40К (в настоящее время)

0,3

Распад 40К (2,6 • 109 лет назад)

1,2

Ультрафиолетовое излучение Солнца (λ < 1500 Ǻ)

0,08

Ультрафиолетовое излучение Солнца (λ < 2000 Ǻ)

4,5

Вулканизм (лава 1000°С)

0,04

Удары метеоритов

0,05

Молнии

0,05

 

Полезно рассмотреть следующие этапы в эволюции органического вещества на примитивной Земле:

1. Эволюция малых молекул.

2. Образование полимеров.

3. Возникновение каталитических функций.

4. Самосборка молекул.

5. Возникновение мембран и доклеточная организация.

6. Возникновение механизма наследственности.

7. Возникновение клетки.

Необходимо отметить, что в настоящее время не представляется возможным искусственно воспроизвести в лабораторных условиях возникновение механизма матричного копирования, реализуемого в живой клетке нуклеиновыми кислотами. Между тем, по-видимому, в этом состоит суть проблемы возникновения жизни на Земле.

Наиболее изученным этапом в пребиологической химии является эволюция малых молекул. Было экспериментально изучено воздействие всех вышеперечисленных видов энергии на смеси различных газов: водород, метан, аммиак, окись углерода, двуокись углерода, азот, вода, кислород, сероводород. При этом было установлено, что если смесь не была окислительной, то всегда образовывались аминокислоты и другие биологически активные соединения.

Определяющими промежуточными продуктами в синтезе аминокислот, оснований нуклеиновых кислот, сахаров и порфиринов являются формальдегид и цианистый водород. Образование этих простых продуктов происходит и в газовой, и в водной фазе. Образование же более сложных молекул (аминокислот) происходит главным образом в водной среде.

Среди возможных механизмов образования аминокислот можно указать на синтез Штрекера, как конечный этап превращения аминонитрилов и циангидринов

NH3 + КСНО + HCN <=> NH2CH(K)CN + Н2О (аминонитрил),

   KCH(NH2)CN + 2H2O KCH(NH2)COOH + NH3, (циангидрин).

Что касается синтеза оснований нуклеиновых кислот, то здесь также, как выяснилось, центральную роль играет цианистый водород. Так, при синтезе аденина «суммарную» реакцию образования этого соединения можно записать  следующим образом:

5HCN → аденин.

При образовании сахаров в условиях, моделирующих примитивную Землю, происходит щелочная конденсация формальдегида. Протекание этой реакции катализируется гидроокисями щелочно-земельных металлов.

В экспериментах, проведенных Гейбелом и Поннамперумой, водные растворы формальдегида в различных концентрациях нагревались в присутствии каолинита, который используется в качестве природного катализатора. В числе продуктов реакции были отождествлены триозы, тетрозы, пентозы, гексозы. Была отождествлена также рибоза.

Чрезвычайно важной группой соединений, присутствующих в большинстве живых организмов, являются порфирины. Порфириновая структура лежит в основе хлорофилла. Целый ряд важнейших ферментов, таких как каталаза, пероксилаза и др., также имеют порфириновую структуру. В экспериментах по абиогенному синтезу порфирин был идентифицирован как один из продуктов реакции в смеси метан — аммиак — вода — водород под действием электрического разряда.

Наиболее существенным достижением в области пребиологической химии можно считать абиогенный синтез нуклеотидов и полинуклеотидов, осуществленный впервые Шраммом из углеводов и гетероциклических оснований с помощью метафосфорных эфиров (МФЭ). В процессе синтеза образовывались продукты различной молекулярной массы и структуры, причем нуклеотиды в полинуклеотидной цепи располагались случайно, не образуя какой-либо определенной последовательности.

Значительный интерес представляют также эксперименты Фокса по термической полимеризации аминокислот.

Таким образом, многочисленные эксперименты по абиогенному синтезу продемонстрировали возможность образования основных классов биологических активных соединений небиологическим путем в условиях, моделирующих природные условия, существовавшие на примитивной Земле.

Однако образование самых сложных молекул не решает вопроса об отборе и сохранении определенных типов молекулярных соединений. На определенной стадии усложнения структуры молекул возникает такое принципиально новое свойство их, как возвратный катализ. Образовавшиеся довольно сложные молекулы должны разрушаться (диссоциировать) при поглощении более длинноволнового излучения, чем то, которое стимулировало их образование. Так как поток солнечного излучения в области более длинных волн значительно превосходит поток ультрафиолетового излучения, стимулирующего синтез первичных органических соединений, последние будут разрушаться, и какого-либо накопления их происходить не должно. Заметим, что эта трудность является общей для всех механизмов образования первичных органических соединений, так как неокисленная атмосфера планеты должна быть прозрачной для ультрафиолетовых лучей Солнца. Сейчас намечается несколько путей преодоления этой трудности. Например, можно предположить, что после сформирования гидросферы образовавшиеся в ее поверхностных слоях органические соединения путем конвекции переносились на достаточную глубину, куда уже «разрушительное» излучение не доходило.

Зная поток ультрафиолетового излучения Солнца, стимулирующего образование органических веществ, и считая, что вновь образовавшиеся вещества не разрушаются, а постепенно накапливаются, можно оценить количество образующегося таким способом органического вещества на Земле. Такие вычисления произвел Саган, который в предположении, что этот процесс длился 1 млрд. лет, нашел, что над каждым квадратным сантиметром земной поверхности могло образоваться несколько килограммов органических соединений. Эта величина представляется достаточно большой. Например, если бы все эти образовавшиеся в раннюю эпоху развития нашей планеты органические вещества растворить в мировом океане, концентрация такого раствора была бы приблизительно 1 %. 

Так как есть основания полагать, что объем мирового океана за геологическую историю Земли почти не менялся, можно сделать вывод, что первобытный океан представлял собой 1%-ный раствор различных органических соединений. Довольно крепкий питательный бульон! Эта среда была весьма благоприятна для образования новых, более сложных органических соединений. В частности, из аминокислот могли синтезироваться различные белковые соединения.

До сих пор предполагалось, что жизнь как-то возникла на всей «осредненной» поверхности первобытной Земли, для чего потребовались сотни миллионов лет.  Но, конечно, это могло быть и наверняка было не так. В отдельных местах земной поверхности условия для эволюции сложных молекул в первые примитивные формы жизни могли быть особенно благоприятны. Идеи «локального» возникновения жизни на Земле и притом в сравнительно короткие сроки высказывались неоднократно. Л. М. Мухин предложил интересную гипотезу, что жизнь могла возникнуть в области подводных вулканов.

По всей видимости, именно подводный вулканизм мог играть известную роль в образовании предшественников сложных органических молекул. Действующий вулкан можно рассматривать не только как источник тепла, но и как источник простых соединении, таких как СО, СН4, NH3, СО2, H2O, Н2, H2S и пр., необходимых для синтеза органическою вещества. Реакции, происходящие между этими газами в условиях повышенных температур и давлений, должны приводить к образованию предшественников сложных органических соединений, цианистого водорода и формальдегида. Гидросфера (океан) используется в данной модели как фактор, обеспечивающий стабильность образовавшихся продуктов вследствие больших перепадов температуры в зоне действия подводного вулкана. Кроме того, в области подводного вулкана, имеется широкий диапазон давлений, что весьма существенно, так как высокие давления необходимы для повышения выхода продукта в ряде реакций. Наконец, наличие в области подводного извержения зон с температурой 50 — 100 оС обеспечивает прохождение ряда реакций, приводящих к синтезу более сложных органических соединений. Механизмы этих реакций освещены в работах  Оро и Поннамперумы.

Образование в процессе извержения твердых частиц обусловливает наличие катализаторов и может способствовать в дальнейшем процессам концентрирования и полимеризации органики.

Л. М. Мухин указывает на некоторые реакции, которые могут иметь место в зоне подводных извержений:

                          катализаторы

1)           СН4  + NH3HCN + ЗН2,

                          катализаторы

2)           2СО + NH3 HCN + СО2 + Н2,

3)           СО+ Н2 → альдегиды и другие кислородосодержащие соединения, углеводороды.

Таким образом, вследствие возможного образования в зоне действия подводного вулкана HCN и СН2О, подводные вулканические процессы можно рассматривать как источник небиологического синтеза сложных органических соединений.

Рассмотрим теперь некоторые численные значения, которые носят характер ориентировочных оценок. Масса газа, выброшенного при сильном извержении, имеет порядок величины 1012 г. Если принять, что в течение истории развития Земли такие извержения были ежегодно, то при благоприятных условиях могло образоваться до 1017 г. органических соединений.

«Вулканический» механизм образования сложных молекул может иметь принципиальное значение в условиях, где по ряду причин воздействием ультрафиолетового излучения на исходные материалы можно пренебречь.

Предложенный Мухиным механизм образования сложных молекул не требует наличия метано-аммиачной атмосферы. Было бы интересно проверить этот механизм экспериментально в зоне действия какого-либо подводного вулкана.

Много лет тому назад Бернал высказывался в том смысле, что жизнь могла зародиться в иле небольших лагун. В таких условиях полимеризация молекул может протекать гораздо быстрее, так как микроскопические частицы ила могут выступать в роли своеобразных катализаторов. Это предположение Бернала было подтверждено экспериментально. Любопытно отметить, что некоторые сложные органические молекулы лучше «сопротивляются» разрушительному  воздействию ультрафиолетовых лучей, а также нагреву, чем простые. Поэтому следует ожидать, что с течением времени должны «выживать» более сложные молекулы, в то время как простые должны разрушаться. Довольно любопытный пример «естественного отбора» у неживой материи!..

Наряду с описанным «естественным отбором», приводящим к преимущественному образованию сложных органических соединений, будут происходить, и притом довольно эффективно, «сливания» таких молекул в целые  молекулярные агрегаты, насчитывающие сотни тысяч и миллионы молекул. Такие образования называются «коацерватными каплями». Они неоднократно исследовались экспериментально. На рис.54 (не сканировался) приведены фотографии таких капель, сделанные через микроскоп при увеличении в 320 раз. В итоге образования коацерватных капель в них могут быть сконцентрированы все белковые молекулы, присутствующие в мировом океане — растворе. В окружающей воде будут растворены только сравнительно простые, низкомолекулярные соединения.

Академик А. И. Опарин считает, что именно эти коацерватные капли при определенных условиях могли дать начало образованию, первичных живых систем. Об этом свидетельствует ряд интересных свойств коацерватных капель, ставших известными в результате лабораторных исследований. В частности, эти капли обладают свойством улавливать и впитывать в свою структуру некоторые вещества из окружающего их низкомолекулярного раствора. В этом А. И. Опарин усматривает зачаточные формы процесса обмена веществ — важнейшего, по его мнению, атрибута жизни. Он подчеркивает, что в мире коацерватов имеют место полные аналоги процесса естественного отбора. По этому поводу он пишет: «Образовавшиеся в земной гидросфере коацерватные капли находились погруженными не просто в воде, а в растворе разнообразных органических веществ и неорганических солей. Эти вещества и соли адсорбировались коацерватными каплями и затем вступали в химическое взаимодействие с веществом самого коацервата. Происходили процессы синтеза. Но параллельно с ними шли и процессы распада. Скорость как тех, так и других процессов зависела от внутренней организации каждой данной капли. Более или менее длительно существовать могли только капли, обладавшие известной динамической устойчивостью, в которых при данных условиях внешней среды скорости синтетических процессов преобладали над скоростями разложения. В обратном случае капли были обречены на исчезновение. Индивидуальная история таких капель быстро обрывалась, и поэтому такие «плохо организованные капли» уже не играли никакой роли в ходе дальнейшей эволюции органической материи». (См. Опарин А.И., Фесенков В.Г. Жизнь во Вселенной. — М.: Изд-во АН СССР, 1956.)

С гипотезой А. И. Опарина в настоящее время трудно согласиться. Наличие аналогов обмена веществ и «естественного отбора» у коацерватов еще не есть доказательство того, что они могли привести к образованию первых примитивных живых организмов. Основными свойствами всякого живого организма, помимо обмена веществ, являются наличие «копировальной системы», «кода», передающего по наследству все характерные признаки данной особи. Между тем у коацерватов ничего подобного нет. Изобилие на первобытной земле всевозможных, в том числе и достаточно сложных, «строительных блоков», из которых построено все живое, еще не объясняет, как возникла и стала функционировать живая субстанция, представляющая собой даже в самых простых формах весьма сложную машину, а если говорить точнее, великолепно работающую современнейшую фабрику-автомат.

«Управляющая система» этой фабрики сосредоточена  в одномерной структуре ДНК, хранящей информацию, записанную на языке, состоящем из четырех букв (оснований). Система осуществляет перевод этого языка на язык строящихся по ее командам белков, состоящий из 20 букв (аминокислот).

Как произошел качественный скачок от неживого к живому, гипотеза А. И. Опарина совершенно не объясняет. Только привлечение основных представлений современной молекулярной биологии, а также кибернетики, может помочь решению этой важнейшей, основной проблемы. Впрочем, пока не ясно, есть ли такое решение вообще.

Итак, центральной проблемой происхождения жизни на Земле является реконструкция эволюции механизма наследственности. Жизнь возникла только тогда, когда начал действовать механизм репликации. Ведь любая сколь угодно сложная комбинация аминокислот и других сложных органических соединений — это еще не живой организм. Можно, конечно, предположить, что при каких-то исключительно благоприятных обстоятельствах где-то на Земле возникла некая «праДНК», которая и послужила началом всему живому на Земле. Вряд ли, однако, это так, если гипотетическая «праДНК» была вполне подобна современной. Дело в том, что современная ДНК сама по себе совершенно беспомощна. Она может функционировать только при наличии белков-ферментов. Думать, что чисто случайно, путем «перетряхивания» отдельных блоков — многоатомных молекул, могла возникнуть такая сложнейшая машина, как «праДНК» и нужный для ее  функционирования комплекс белков-ферментов, — это значит верить в чудеса. Куда, например, более вероятно предположить, что какая-нибудь мартышка, беспорядочно барабаня по клавиатуре пишущей машинки, случайно напечатает 66-й сонет Шекспира... Выход из этого затруднительного положения может состоять в том, что сам репликационный механизм за первые сотни миллионов лет развития «пражизни» претерпел огромную эволюцию от простого к сложному. К сожалению, успехи в этой важнейшей области пока незначительны.

Рич, однако, указал на значительное сходство строения молекул ДНК и РНК, которые тем не менее выполняют в клетке совершенно различные функции. ДНК является носителем генетической информации, РНК служит для превращения этой информации в реальные молекулы белка, т. е. для непосредственного синтеза видовоспецифического белка.

Особого внимания заслуживает открытие у вируса табачной мозаики и у некоторых других вирусов не двух, а только одной нуклеиновой кислоты, более простой — РНК. Эта РНК оказалась способной осуществлять функции обеих нуклеиновых кислот — передачи наследственной информации и синтеза белка.

Можно допустить, что обе нуклеиновые кислоты произошли от одной общей более примитивной молекулы. Усложняясь и специализируясь в процессе эволюции, эта «прануклеиновая» кислота превратилась в функционально различные типы молекул ДНК и РНК. Возможно, что этой первичной нуклеиновой кислотой могла быть молекула, близкая к более простой РНК. Подобно РНК вируса табачной мозаики она обладала способностью к передаче наследственной информации и к синтезу белка. Возможно также, что вирусы, содержащие только одну РНК (филогенетически более раннее образование), следует рассматривать как современные модификации древней, примитивной формы жизни.

Все это может пролить некоторый свет на пути возникновения и развития живых существ от более простых форм управления и примитивной жизни к более сложным формам. Если небелковая («неживая») молекула РНК в подходящей среде образует живые системы, то не на этом ли пути можно обнаружить «мостик» между неживой и живой природой? Решающее слово в этом важнейшем вопросе принадлежит различным будущим биохимическим и генетическим исследованиям.

Для образовавшихся на планете первых примитивных организмов высокие дозы жесткой радиации могут представлять смертельную опасность, так как мутации будут происходить так быстро, что естественный отбор не поспеет за ними.

Мы уже упоминали в гл.5, что примерно один раз в сотни миллионов лет около Солнца вспыхивает сверхновая звезда, и в нашей планетной системе уровень космических лучей увеличивается в десятки и сотни раз. Однако для сравнительно короткоживущих примитивных жизненных форм такое увеличение уровня жесткой радиации не представляет серьезной опасности. Кроме того, длительность периодов повышенной интенсивности космических лучей сравнительно невелика (десятки тысяч лет). Другим возможным источником губительной жесткой радиации мог быть повышенный уровень радиоактивности на первобытной Земле. Однако расчеты показывают, что этот уровень вряд ли превышал современный более чем в 10 раз. Солнечное рентгеновское излучение в те времена, так же как и сейчас, не проникало через толщу атмосферы. И только один вид жесткой радиации имел высокую интенсивность — ультрафиолетовое излучение Солнца в области длин волн 0,29 — 0,24 мкм, для которого первобытная атмосфера Земли, в отличие от современной, была прозрачной.

Так как Солнце в те времена излучало примерно так же, как и сейчас, мы можем оценить поток его излучения на Земле в указанной спектральной области.  Этот поток оказывается равным 5 • 103 эрг/(см2 • с), т. е. примерно в 300 раз меньше полного потока солнечного излучения. Смертельная доза такой радиации для большинства современных микроорганизмов составляет 105 — 106 эрг/см2. Радиационная опасность отсутствует в том случае, когда за время жизни одного поколения живых организмов доза радиации меньше приведенной величины. Имеются некоторые основания полагать, что время жизни первобытных, примитивных организмов было достаточно велико, например, несколько недель. Если считать, что для них доза в 103 эрг/см2 была опасной, то поток ультрафиолетовой радиации должен быть не больше 10-3 эрг/(см2 • с), т. е. в 5 млн. раз меньше реального потока солнечного излучения. Отсюда следует важный вывод, что первичные живые организмы могли образоваться и развиваться только на достаточно большой глубине под водой. Слой воды в несколько десятков метров уменьшает поток ультрафиолетового излучения в десятки миллионов раз и тем самым обеспечивает необходимую для развития живых организмов «броню». Это является еще одним важным аргументом в пользу утверждения, что жизнь на нашей планете возникла и развивалась первоначально в воде, причем на достаточно большой глубине.

Мы остановились только на некоторых основных вопросах возникновения жизни на Земле и по аналогии — на других планетах. В этой проблеме ещё очень многое неясного. Например, все белковые соединения, входящие в состав живого вещества, имеют «левую асимметрию». Что это означает? Дело в том, что большое количество органических соединений может существовать в двух формах. Эти формы отличаются одна от другой противоположной ориентацией отдельных группировок атомов — некоторая группировка атомов в одной форме является зеркальным изображением соответствующей группировки в другой (рис. 55).

Когда происходит лабораторный синтез такого соединения, всегда «правые» и «левые» формы присутствуют в одинаковом количестве, так как «наращивание» молекул  путем присоединения атомов и атомных группировок происходит случайным образом. Почему же в «живых» органических соединениях всегда присутствуют только «левые» формы?

Еще Пастер указал, что «асимметричный синтез» может происходить при наличии какого—нибудь природного асимметричного фактора. И действительно, если в лабораторных условиях синтезировать некоторые органические соединения под воздействием поляризованного по кругу света, то в зависимости от направления  вращения светового вектора получаются преимущественно «правые» или «левые» формы синтезируемых веществ. К сожалению, таким способом трудно объяснить асимметрию «живых» молекул, так как в солнечном излучении отсутствует сколько-нибудь значительная составляющая, поляризованная по кругу. Впрочем, нельзя исключать того, что после прохождения значительной толщи первобытного океана, вода которого, быть может, обладала соответствующими оптическими свойствами, такая составляющая и возникала. Этот вопрос требует специального исследования.

Другой возможный путь асимметричного синтеза был указан Берналом. При синтезе некоторых органических веществ на поверхности оптически активных кристаллов (например, кварца) могут возникать формы определенной симметрии. Следует, однако, отметить, что в природе распространены как «правые», так и «левые» кристаллы. Поэтому не совсем ясно, каким образом в живом веществе молекулы имеют асимметрию только одного знака и вряд ли асимметричный синтез в естественных условиях первобытной Земли мог происходить таким способом. Так или иначе, вопрос о причине асимметрии живой субстанции пока остается открытым.

Заслуживает внимания еще такой вопрос: почему жизнь на Земле не возникает из неживого вещества в настоящее время? И вообще — жизнь на Земле возникла однократно или многократно? Против возможностей повторного зарождения жизни на нашей планете из неживой субстанции можно выдвинуть такой серьезный аргумент: ранее возникшая жизнь не даст возможность новому зарождению жизни.  Микроорганизмы и вирусы буквально съедят уже первые ростки новой жизни. Другим аргументом против «повторного» зарождения жизни является ничтожно малая вероятность этого процесса. Ведь нельзя исключить возможность того, что жизнь на Земле возникла случайно.

Существует еще одно обстоятельство, на которое, может быть, стоит обратить внимание. Хорошо известно, что все «живые» белки состоят из 20 аминокислот,  между тем как всего аминокислот известно свыше 100. Не совсем понятно, чем отличаются эти 20 аминокислот от остальных своих «собратьев». (Впрочем, некоторые количества других аминокислот имеются у низших организмов. Следует, однако, заметить, что у этих организмов ДНК отличаются от обычных.) Нет ли какой-то глубокой связи между происхождением жизни и этим удивительным явлением? Мы еще раз должны подчеркнуть, что центральная проблема возникновения жизни на Земле — объяснение качественного скачка от «неживого» к «живому» — все еще далека от ясности. Недаром один из основоположников современной молекулярной биологии проф. Крик на Бюраканском симпозиуме в сентябре 1971 г. сказал: «Мы не видим пути от первичного бульона до естественного отбора. Можно прийти к выводу, что происхождение жизни — чудо, но это свидетельствует только о нашем незнании».

Все же не будем отчаиваться — и эта твердыня непознанного будет взята; порукой этому является гигантский прогресс современной молекулярной биологии.

 

От сине-зеленых водорослей до человека

Выше мы уже говорили, что жизнь на Земле возникла еще тогда, когда ее возраст исчислялся всего лишь сотнями миллионов лет. Носителями жизни в ту отдаленную эпоху были одноклеточные, лишенные клеточных ядер организмы — бактерии и сине-зеленые водоросли. Первые клетки с ядрами появились около 3,5 миллиардов лет тому назад (ср. «Космический календарь» — см. с. 278, табл. 12). Потребовалась половина времени эволюции Земли, чтобы это произошло — хорошая иллюстрация медленности процесса эволюции жизни на Земле. Примерно к этому же времени относится и появление многоклеточных организмов, по-видимому, возникших из колоний одноклеточных с прогрессивно дифференцирующимися функциями клеток. С этого времени дальнейшая эволюция характеризовалась огромным многообразием форм.

Существующая периодизация развития жизни на Земле дана в таблице. Указаны также эпохи начала соответствующих периодов.

 

Эра

Период

Возраст (начало периода) 106 лет

Кайнозойская

Четвертичный

l

Третичный

65

Мезозойская

Меловой

140

Юрский

190

Триасовый

225

Палеозойская

Пермский

250

Каменноугольный

280

Девонский

350

Силурийский

400

Кембрийский

550

Протерозойская

Верхний протерозой

1600

Нижний протерозой

2600

Архейская

4000

 

В протерозойскую эпоху жизнь на Земле начала становиться космическим фактором. К этому времени относится начало формирования биосферы Земли, полностью преобразившей наружные слои поверхности нашей планеты и ее атмосферу. Жизнедеятельность организмов привела к накоплению в атмосфере Земли свободного кислорода (фотосинтез!) и извлечению из нее углекислоты. До этого организмы развивались в лишенной кислорода среде. Фотосинтез начался около 3,5 миллиарда лет назад.

Первоначально жизнь на Земле развивалась только в ее гидросфере. Выход жизни на сушу — важнейший этап в ее развитии. Это произошло в Кембрийском периоде около 500 миллионов лет назад, когда возраст Земли был только на 10% меньше нынешнего! До чего же медленно шла эволюция жизни на Земле! Могучей движущей силой этой эволюции был дарвиновский естественный отбор, сочетающийся со способностью организмов к мутациям. В свою очередь отбор определялся ограниченностью ресурсов сформировавшейся и развивавшейся биосферы, противодействующей чудовищной потенциальной способности жизни к неограниченной экспансии. Жесткий естественный отбор невероятно развивал способность видов к адаптации в условиях изменяющейся окружающей среды. Например, обусловленное жизнедеятельностью организмов изменение состава атмосферы в сторону насыщения ее кислородом оказалось гибельным для большинства анаэробных форм. Ведь свободный кислород с его огромной химической активностью — смертельный яд для таких организмов. И только немногие формы смогли не только приспособиться к изменившимся атмосферным условиям, но и использовать их для своего дальнейшего развития. Так жизнь стала «аэробной».

Бурное развитие жизни началось в палеозойскую эру. Мы уже упоминали, что в Кембрийский период началась колонизация суши. По-видимому, это происходило в мелководных лагунах, где на окаймляющей их прибрежной кромке появились пленки водорослей. В этот период море кишело уже довольно высокоорганизованными животными — трилобитами, которых насчитывалось свыше тысячи видов. Это были предки нынешних членистоногих. У трилобитов уже развился орган зрения. Отдельные особи достигали размеров порядка метра. Наряду с трилобитами (ныне полностью вымершими) кембрийские моря кишели иглокожими, моллюсками и плеченогими. Появились первые раковины.

В силурийском периоде растения покоряют сушу. Этот процесс получил особенное развитие в Девоне. Растительный мир обогатился папоротниками, хвощами. В морях появились первые рыбы. Первые животные вышли на сушу. В следующем каменноугольном периоде произошел небывалый расцвет растительного царства, чему, возможно, способствовала увеличившаяся вулканическая активность Земли, сопровождающаяся значительным выделением углекислоты. Это было царство амфибий, уже освоивших размножение на суше. В это же время появились первые пресмыкающиеся. Воздух наполнился летающими насекомыми. После пермского периода, сопровождавшегося значительными климатическими изменениями и обусловленными ими значительными изменениями растительного и животного мира, наступила мезозойская эра. Это было царство рептилий, достигших небывалого разнообразия форм. Но уже в начале мезозоя появились первые млекопитающие. Катастрофически быстрое повсеместное вымирание динозавров уже давно привлекает к себе всеобщее внимание. Было выдвинуто много гипотез, объясняющих причину этой настоящей катастрофы, постигшей жизнь на Земле.

Наступившая новая кайнозойская эра ознаменовалась очередной перестройкой биосферы. Строение земной поверхности приблизилось к современному. Наступило царство млекопитающих. И вот пришла эра человека. Это случилось, по-видимому, около 15 миллионов лет назад, когда появился наш самый отдаленный предок — полуобезьяна-получеловек рамапитек, ископаемые остатки которого обнаружены в Индии. Время появления человека 2,7 млн. лет назад получается на основании расчетов скорости изменений в генной структуре человека.

Поражает чудовищное богатство процесса видообразования в течение эволюции жизни на Земле. Создается впечатление о какой-то фантастической расточительности и даже «избыточности» формообразования в живой природе. В самом деле, оценки палеонтологов приводят к значению ~ 500 миллионов видов, существовавших за все время эволюции жизни на Земле! Заметим, что в настоящее время насчитывается около 2 миллионов видов (из которых ~ 75% — насекомые). Любопытно, что число видов современных млекопитающих достигает 3500, из которых 2500 видов грызунов.

Как уже неоднократно подчеркивалось, развитие жизни на Земле привело к коренной перестройке поверхностных слоев земли и ее атмосферы. В этой связи любопытно привести данные о суммарной массе живого вещества на Земле. Соответствующие данные, полученные по оценке советских авторов, приведены в таблице:

 

 

Континенты

Океан

растения

животные + микроорганизмы

итого

растения

животные + микроорганизмы

итого

Миллиарды  тонн

2400

20

2420

0,2

3

3,2

Проценты

99,2

0,8

100

6,3

93,7

100

 

Из этой таблицы видно, что основная масса живого вещества сосредоточена в зеленых растениях. Обращает на себя внимание относительная бедность мирового океана живым веществом. Любопытно еще отметить, что суммарная масса всего живущего человечества около 100 миллионов тонн — величина не такая уже малая!

В нашу задачу, конечно, не может входить сколько-нибудь подробное описание эволюции жизни на Земле и связанная с этим эволюция биосферы. Это отдельная и большая тема. (См., например, очень содержательную и интересную книгу Камшилов М. М. Эволюция биосферы. — М.: Наука, 1979.) Но мы должны обратить внимание на то, что эта эволюция представляет собой неразрывную последовательность процессов, причем каждый элемент этой последовательности реализовывался путем огромного количества случайных событий. В процессе этой эволюции природа как бы «пробовала» очень много вариантов, из которых большинство приводило к тупикам. Но подобно тому, как ручеек воды причудливо прокладывает свое русло через пересеченную местность, общее направление эволюции от примитивных сине-зеленых водорослей к человеку прослеживается вполне уверенно. В этом общем направлении ни одно из звеньев эволюционного процесса не может быть выброшено.

Рассмотрим в виде примера пресмыкающихся, которые стали бурно размножаться на суше в середине каменноугольного периода. Это им принадлежит великое «изобретение» — откладывание заключенных в плотную скорлупу яиц, из которых вылуплялось потомство. Один знаток рептилий в этой связи очень точно заметил: «... уже в первом яйце, отложенном первой рептилией на суше, заключалось и пение птиц, и человеческая мысль». (См. Карр А. Рептилии. — М.: Мир, 1975.) И мы имеем все основания сказать, что отдаленными предками человека являются рептилии. Ну, а что было бы, если бы не случилось великое вымирание динозавров в конце мелового периода, вымирание, обусловленное какой-то случайной, скорее всего, — космической причиной? Совершенно очевидно, что эволюция жизни на Земле пошла бы как-то иначе. Во всяком случае млекопитающие не получили бы такого фантастического развития, как это случилось после освобождения ниш биосферы, до этого занятых рептилиями. И очень могло быть, что их эволюция зашла бы в тупик.

          Какой будет жизнь на других системах – похожей на земную или сильно отличающейся от нее? И.С.Шкловский утверждает, что жизнь должна быть непохожа на земную. В одном из поздних изданий книги «Вселенная, жизнь, разум» он пишет: «Если даже где-то на какой-нибудь подходящей планете и возникла когда-то жизнь, ее развитие, обусловленное чудовищно длинной цепью других случайных обстоятельств, практически никогда не повторит развитие жизни на Земле. Не может быть и речи о «тиражировании» эволюции жизни во Вселенной. (Очень удачный термин «тиражирование» предложен Я. И. Фурманом.) Вероятность такого «тиражирования» неизмеримо меньше, чем выигрыш автомобиля в спортлото. Ситуацию совершенно не меняет то обстоятельство, что очагов жизни во Вселенной может быть очень много. Например, в Галактике число таких очагов может быть ~ 108, если сделать «сверх-оптимистическое» предположение, что почти на каждой планете обязательно возникает жизнь. Дело в том, что вероятность реализации той же самой последовательности случайных событий, которая на Земле привела к появлению человека, невообразимо меньше, чем 10-8».

Другую точку зрения отстаивает известный советский писатель-фантаст И.А.Ефрамов (по основной специальности – палеонтолог). Признавая, что количество форм жизни во Вселенной может быть бесконечно многообразным, он говорит, что, когда эволюция дойдет до возникновения разумных существ, они не будут принципиально отличаться от человека. Устами одного из героев своей повести «Звездные корабли» Ефремов говорит: «Что требуется для развития большого мозга, для его независимой работы, для мышления? Прежде всего должны быть развиты мощные органы чувств, и из них наиболее - зрение, зрение двуглазое, стереоскопическое, могущее охватывать пространство, точно фиксировать находящиеся в нем предметы, составлять точное представление об их форме и расположении. Излишне говорить, что голова должна находиться на переднем конце тела, несущем органы чувств, которые опять-таки должны быть в наибольшей близости к мозгу для экономии в передаче раздражения. Далее, мыслящее существо должно хорошо передвигаться, иметь сложные конечности, способные выполнять работу, ибо только через работу, через трудовые навыки происходит осмысливание окружающего мира и превращение животного в человека. При этом размеры мыслящего существа не могут быть маленькими, потому что в маленьком организме не имеется условий для развития мощного мозга, нет нужных запасов энергии. Вдобавок маленькое животное слишком зависит от пустяковых случайностей на поверхности планеты: ветер, дождь и тому подобное - для него уже катастрофические бедствия. А для того, чтобы осмысливать мир, нужно быть в известной степени независимым от сил природы. Поэтому мыслящее животное должно иметь подвижность, достаточные размеры и силу, обладать внутренним скелетом, подобным нашим позвоночным животным. Слишком большим оно также быть не может: тогда нарушатся оптимальные условия стойкости и соразмерности организма, необходимые для несения колоссальной дополнительной нагрузки - мозга. Мыслящее животное должно быть позвоночным, иметь голову и быть величиной примерно с нас. Все эти черты человека не случайны. По ведь мозг может развиваться тогда, когда голова не является орудием, не отягощена рогами, зубами, мощными челюстями, не роет землю, не хватает добычу1. Это возможно, если в природе имеется достаточно питательная растительная еда; например, для нашего человека большую роль сыграло появление плодовых растений. Это освободило его организм от бесконечного пожирания растительной массы, на что были обречены травоядные, а также от удела хищников - погони и убивания живой добычи. Хищное животное хотя и ест питательное мясо, но должно обладать орудиями нападения и убийства, мешающими развитию... Назначение конечностей должно быть раздельным: одни должны выполнять функцию передвижения ноги, другие быть органами хватания - руки. Все это связано с тем, что голова должна быть поднята от земли, иначе ослабнет способность восприятия окружающего мира. Вывод: форма человека, его облик как мыслящего животного не случаен, он наиболее соответствует организму, обладающему огромным мыслящим мозгом. Между враждебными жизни силами Космоса есть лишь узкие коридоры, которые использует жизнь, и эти коридоры строго определяют ее облик. Поэтому всякое другое мыслящее существо должно обладать многими чертами строения, сходными с человеческими, особенно в черепе..» 2

Единственное, что мы можем точно сказать на сегодняшний день — это то, что однажды возникшая жизнь будет эволюционировать в сторону усложнения и повышения ее адаптации к меняющимся условиям внешней среды. Однако никаких более конкретных соображений о характере, этапах и конечных результатах такой эволюции сказать нельзя.

Остановимся, наконец, на некоторых моментах, связанных с заключительным этапом эволюции жизни на Земле, который привел к появлению человека — носителя разумной жизни. Несомненно, что возникновение разумной жизни ознаменовало собой новый важный этап в развитии материи во Вселенной (неживая материя — жизнь — разумная жизнь). Современная палеонтология прослеживает отдаленных предков человека до полуобезьян рамапитека и кениатека (15 миллионов лет). Заметим, что по мере развития палеонтологии эпоха существования предков человека все более отодвигается назад. Давно ли было время, когда древнейшим предком человека считали питекантропа, возраст которого всего лишь порядка сотни тысяч лет? Как же произошло выделение человека как ветви от ствола приматов? Когда и при каких обстоятельствах?

Конечно, огромную и даже решающую роль в этом процессе сыграл труд. Но все же — почему был выделен один (а может быть, и не один) вид приматов? По какому признаку и по каким причинам? Очень может быть, что в становлении человека не малую, а может быть, и решающую роль сыграл его величество случай. Думать, что возникновение мыслящих существ есть фатально неизбежный заключительный этап эволюции жизни на Земле — значит, стоять на чисто идеалистических позициях. Ибо это означало бы веру, что вся Вселенная имела конечной целью своего развития появление мыслящих существ. Однако не забудем, что именно через случайности и проявляет себя закономерность. То, что на такой-то планете в такой-то период времени возникла разумная жизнь – это случайность. Но то, что на своем определенном этапе химическая эволюция вещества ведет к появлению жизни, а биологическая эволюция имеет своим логическим завершением появление разумной жизни (вслед за которой наступает период эволюции уже не биологической, а социальной) – это явление закономерное.

Так или иначе, но развив свой мозг, человек скачком вышел из равновесия с окружающей средой-биосферой, которая сформировалась за несколько миллиардов лет и частью которой он являлся. Этому процессу особенно способствовало наступление технологической эры, происшедшее всего каких-то 350 лет назад. За этот ничтожный срок развитие человечества приняло подлинно взрывной характер. И в итоге этого взрывного процесса человек стал реальной угрозой самому существованию биосферы. Его неконтролируемая деятельность уже привела к ряду необратимых последствий в экологии. Например, практически исчезли крупные хищники, радикально изменились условия взаимосвязи между различными экологическими нишами, наконец, человечество стоит перед реальной угрозой ядерного самоуничтожения. Под угрозу поставлены атмосфера и гидросфера Земли. И только вера в то, что человек есть действительно разумное существо, позволяет нам надеяться, что при лучшей организации общества человечество придет в уже новое состояние равновесия с окружающей средой.


1.       Хотя, вероятно, на самом деле этот вопрос не настолько прост. По утверждению журнала "Наука и жизнь" №1 за 1967 год, рога копытным животным нужны потому, что в них находятся сосуды, обеспечивающие стабильную температуру мозга

2. Хорошие подтверждения вывода о том, как разные пути эволюции могут привести к сходным формам, имеются в лекции Михаила Гельфанда "Геномы и эволюция" на таком, примере:

«Или, например, у рыб, которые живут в холодных морях, есть белки-антифризы. Они появились, потому что требуется, чтобы у них не образовывались хрусталики льда. Они тоже рекрутированы из белков совсем другого происхождения. Они похожи сейчас по строению, у них основное – это длинные периодические повторы, но по происхождению совершенно разные, это видно по последовательности. Смотрели на северную треску, и на антарктическую нототению, это совершенно разные таксоны, у которых конвергентно образовались белки с новой похожей функцией»

Ещё один показательный пример приводится в лекции Кирилла Еськова «Палеонтология и макроэволюция»:

«млекопитающих (маммалий) от предков-рептилий отличает шесть признаков: структура слуховых косточек, наличие мягких губ и пр. И вот есть несколько групп этих зверозубых ящеров, териодонтов. И оказывается, что в каждой из этих групп начинают по отдельности, вразбивку, появляться эти маммальные признаки. Этих групп, эволюционных линий, шесть, но только в одной набирается полный синдром – синдром маммалий. А все остальные так и остаются «недоделанными». Маммалии получаются только в одной ветке зверозубых рептилий – сумчатые плюс плацентарные. От одной из тех веток «недомаммалий» сейчас остались утконосы и ехидны (монотрематы). А вообще таких «утконосоподобных» попыток было еще четыре.

Татаринов назвал это «параллельной маммализацией териодонтов». Дальше оказалось, что ровно по такой же схеме происходят все сколько-нибудь заметные группы. Из кистеперых рыб – четвероногие (тетраподы), первые земноводные, они происходят ровно по такой же схеме: «параллельная тетраподизация кистеперых», она хорошо разобрана. Из рептилий – птицы, точно по такой же схеме, «параллельная авиизация архозавров». То, что сейчас нарыли по этой части китайцы, – это, конечно, феноменально, Китай вообще стремительно становится великой научной державой. Вот мы в Европе тут долго водили хороводы вокруг археоптерикса, а теперь понятно, что археоптерикс – это одна из таких параллельных ветвей «авиизации». Т.е. с птицами все происходило ровно по такой же схеме. «Синдром птицы», начинающийся с появления пера и тянущий за собой много чего, начинает собираться, как минимум, уже в пяти ветвях мелких архозавриков, начинающих обрастать перьями, которые, явным образом, предпринимают попытки взлететь. Две из этих линий реально взлетели – настоящие птицы, и еще такие энанциорнисовые птицы, хвостатые. Точно по такой же схеме получаются и цветковые из голосеменных.

Вы сами понимаете, что схема безумно интересна. Нельзя не упомянуть, что и с человеком все ровно так же происходит: «параллельная гоминизация приматов». Т.е. фактически была африканская ветвь: от шимпанзе через недавно открытых орорина и сахелантропа к австралопитекам, ну, а от австралопитека все уже более-менее понятно. Но тем из вас, кто еще помнит популярные книги 50-60-х гг., наверняка, попадались там рамапитек и сивапитек. Как вы помните, в «Понедельник начинается в субботу» Ад-Амм был «питекантропом, который кочевал по долине Арарата с трибой рамапитеков». Рамапитек тогда постоянно фигурировал в этих списках. Потом стало понятно, что рамапитек к делу не относится, что рамапитек – это один из вариантов «азиатского проекта», который был параллелен африканскому. Что там, в Азии, тоже создавали крупного прямоходящего примата, но на основе не шимпанзе, а орангутана. Там были, например, замечательные гиганты – мегантроп и гигантопитек. И одним из вариантов были рамапитек и сивапитек. И очень даже может быть, что со временем они бы до чего-нибудь даже доэволюционировали. Но в любом случае «африканский проект» успел раньше, и они решили проблемы со всеми, кто им мешал.

Обратите внимание. На этом месте постоянно просятся аналогии, что «проводится тендер». Шести конструкторским бюро дается заказ на определенное изделие. Они выставляют его на конкурс, дальше идут стендовые испытания, ходовые испытания и пр. Потом в итоге одни исчезают, и принимается некая одна модель. Поэтому идея «направленности эволюции», на чем сломано множество копий, обретает на этом месте плоть, на первый взгляд.

Вопрос из зала: А участников тендера всегда шесть?

Еськов: Нет-нет! У цветковых больше, у тетрапод меньше»

Hosted by uCoz