Элементы, полученные в реакторах и при ядерных
взрывах
В данном параграфе
использован текст из книги К.Хоффмана
"Можно ли сделать золото"
1. Нептуний.
К началу 40-х годов были известны все 92 элемента периодической системы. Свободных клеток в ней уже не было. А как обстояло дело со спорными элементами по другую сторону урана? После распутывания вопроса с продуктами деления урана от прежних "трансуранов" не осталось почти ничего. Имелось лишь одно-единственное исключение: изотоп урана с массовым числом 239, обнаруженный Отто Ханом с сотрудниками еще в марте 1936 года, был истинным. Хотя это был не новый элемент, но он излучал бета-лучи, следовательно, должен был переходить в следующий, 93-й элемент.
Как мы уже
знаем, исследователи из Берлин-Далема не обнаружили 93-й элемент, потому что
они располагали лишь слабыми источниками нейтронов. Они и не искали его более.
Ведь ученые считали, что идентифицировали другой представитель элемента 93- экарений.
В то время они еще не подозревали, что это были ложные трансураны. Примешалась,
конечно, и неудача: ведь Отто Хан и его сотрудники уже тогда могли бы получить
определимое количество 93-го элемента после длительного облучения нейтронами
больших количеств урана.
Позднее, оценивая "почти трагическую путаницу", которой тогда
были все охвачены, Отто Хан сказал: "Тут от нас ускользнула Нобелевская
премия". Ибо американцы Мак-Миллан и Абельсон были удостоены
Нобелевской премии за открытие 93-го элемента, о котором они дали знать 15 июня
1940 года.
Как же пришли к открытию элемента 93, означавшему прорыв в неизвестную область химии? После опубликования работ Хана и Штрасмана о делении ядра американский физик Эдвин Мак-Миллан захотел определить пути пробега богатых энергией осколков урана. В Беркли для этого он располагал в основном тремя вещами: циклотроном, некоторым количеством соли урана и... пачкой папиросной бумаги. Циклотрон работал как источник нейтронов: разогнанные дейтроны (ядра атомов тяжелого водорода - дейтерия) падали на бериллий и высвобождали мощный поток нейтронов. Мак-Миллан смочил первый листочек папиросной бумаги раствором соли урана и направил на него поток нейтронов. Листочки, лежащие под ним, должны были уловить разлетающиеся на различные расстояния продукты деления.
К своему удивлению, американский физик нашел два источника активности, резко отстоящих от других продуктов деления, с периодами полураспада 23 мин и 2,3 дня. Уже известно было вещество с периодом полураспада 23 мин. Это был найденный Ханом 239U. Другие атомы, распадавшиеся с периодом полураспада 2,3 дня, могли, как заключил Мак-Миллан, принадлежать продукту, образующемуся из бета-излучателя, то есть из 239U, а именно новому элементу 93.
Будучи физиком, Мак-Миллан чувствовал себя недостаточно компетентным, чтобы установить химические свойства изотопа, которые позволили бы дать однозначную идентификацию этого элемента. В это время ему попался на глаза Эмилио Сегрэ. Тот предложил провести необходимые химические исследования. В июне 1939 года Сегрэ доложил о результатах. Многозначительным является уже сам заголовок его сообщения: "Неудачный поиск трансурановых элементов". Сегрэ пришел к совершенно отрицательному выводу: активность в 2,3 дня принадлежит не трансурану, а редкоземельному элементу, то есть одному из обычных продуктов деления урана. Лишь последующие исследования должны были показать, что даже такой опытный исследователь, как Сегрэ, может однажды ошибиться.
Неудача не отняла решимости у Мак-Миллана. К счастью, в начале 1940 года в Калифорнийский университет приехал на несколько дней его соученик, Филип Абельсон. Работая неустанно день и ночь, Мак-Миллан и Абельсон утвердились во мнении, что открыт первый элемент за пределами классической периодической системы: элемент 93!
Сложный путь открытия привел Мак-Миллана и Абельсона к мысли назвать этот элемент, находящийся по другую сторону урана, нептунием. Когда в 1781 году была открыта планета Уран, считали, что нашли самую последнюю и наиболее удаленную от Земли планету. Однако в 1846 году астрономом Галле была открыта на небосводе новая планета - Нептун.
2. Плутоний
93-й элемент, нептуний, испускает бета-излучение. Поэтому его первооткрыватели, Мак-Миллан и Абельсон, довольно однозначно утверждали в статье от 14 июня 1940 года, что элемент 94 наверняка содержится в продуктах распада нептуния. Однако обнаружить это им не удалось. Препараты были слишком слабы, чтобы можно было идентифицировать элемент 94, по-видимому, весьма долгоживущий. Поэтому Мак-Миллан совместно с коллегами Сиборгом, Сегрэ, Кеннеди и Валем пошли по другому пути.
В декабре 1940 года в Беркли они облучили уран дейтронами, разогнанными в 60-дюймовом циклотроне. Изотоп нептуния, возникающий в результате элементарного превращения по уравнению
238U + 2D = 238Np
+ 2n
должен был распасться в изотоп-238 элемента 94 с излучением бета-частиц. Тогда в Беркли никто не сомневался в этом. Однако, чтобы обнаружить элемент 94, американцам пришлось затратить несколько месяцев. Ведь элемент считается открытым только тогда, когда однозначно выделен один из его изотопов, охарактеризован физически и химически и определен его порядковый номер. Совершенно новый элемент должен проявлять свойства, которые явно отличают его от уже известных соседей по периодической системе. В ночь на 23 февраля 1941 года пробил час рождения 94-го элемента, вернее, его изотопа-238. Мак-Миллан уже не мог непосредственно участвовать в этом открытии. В конце 1940 года он был призван на военную службу.
Необходимо
вернуться по времени немного назад. Решение о том, чтобы провести опыты по
получению элемента 94 с помощью циклотрона в Беркли, было принято на совещании
физиков 15 и 16 декабря 1940 года в Колумбийском университете, в Нью-Йорке.
Лоуренс уступил натиску своих коллег Сегрэ и Ферми и выразил готовность
предоставить в их пользование свой циклотрон.
Все находились под впечатлением смелого полета мысли Ферми. Ведь эмигрировавший
итальянец уже давно занимался теоретическим обоснованием "урановой машины"
(ядерного реактора). Он весьма убедительно доказал своим коллегам, что в таком
"урановом котле" должен образовываться 94-й элемент. Последний должен
был предположительно обладать той же способностью деления, что и уран-235.
Поэтому, считал ученый, настоятельно необходимо пытаться наладить синтез этого
элемента, хотя бы в малых масштабах, с тем, чтобы узнать его свойства.
Историки науки многократно подчеркивают, что Нью-Йоркская конференция явилась историческим поворотным моментом: в декабре 1940 года впервые была развита теория делимости неизвестного 94-го элемента. Однако в это время всемирный обмен научными идеями был уже сильно ограничен секретными преградами, поставленными войной. В американском специальном журнале "Физикл ревью", очень популярном, с июля-августа 1940 года не появлялось никаких сообщений по урановой проблеме.
Поэтому историки не заметили работу немецкого физика Карла фон Вейцзекера. В то время, когда все физики-атомщики уповали на получение ядерной энергии путем деления урана-235, Вейцзекер основывался уже на возможности получения энергии из урана-238. Эти соображения содержались в его докладе от 17 июля 1940 года, подготовленном для отдела вооружения армии.
По представлениям Вейцзекера, в запущенной урановой машине из неделящегося урана-238, считавшегося бесполезным, должен был путем поглощения нейтронов образовываться трансурановый 94-й элемент. Его изотоп-239, как и уран-235, является атомным делящимся веществом. Быть может, вообще было бы выгоднее, полагал Вейцзекер, сосредоточить свое внимание на легко выделяемом элементе 94, чем проводить трудоемкое обогащение и отделение урана-235.
Вернемся к событиям 1941 года в США. Для элемента 94 уже известен был изотоп-238; он был неделящимся, следовательно, неинтересным. Поэтому физики-атомщики США направили все усилия на получение делящегося изотопа-239. В марте 1941 года 1,2 кг чистейшей соли урана, замурованной в большой парафиновый блок подвергли в циклотроне бомбардировке нейтронами. Это было до тех пор самое большое количество вещества, которое подвергли превращению. Через двое суток непрерывной «бомбардировки» были получены приблизительно 0,5 мкг изотопа-239 элемента 94. Появление нового элемента, как и было предсказано теорией, сопровождалось потоком альфа-частиц. 28 марта 1941 года американские физики собрались в Беркли для решающего эксперимента. Сиборг, Сергэ, Кеннеди, Лоуренс взволнованно следили за экраном осциллографа, который должен был показать, способен ли новый элемент к делению. Опыт полностью подтвердил теорию: было найдено второе атомное взрывчатое вещество, даже мощнее предыдущего, так как для него требовалась меньшая критическая масса.
Начиная с этого момента все исследовательские работы с элементом 94 стали в США строго секретными. Номер 49 - таков был код для изотопа-239 элемента 94. И все те, кто работал над атомной бомбой, изготовляемой из 94-го элемента, так и назывались - сорок девятые. В сообщении от мая 1941 года Лоуренс подвел итоги достигнутым успехам и рекомендовал как можно скорее получить необходимое количество 94-го элемента для уранового котла. Не зная соображений Вейцзекера, в США пришли к тем же выводам.
Немецкие исследователи атома тоже не оставались бездеятельными. В лаборатории Манфреда фон Ардена были разработаны основы для получения 94-го элемента. В августе 1941 года гость института, физик Фриц Хоутерманс, закончил свой секретный доклад "К вопросу о развязывании цепных ядерных реакций". В нем он указывал теоретические возможности для изготовления в урановом котле нового взрывчатого вещества из природного урана.
94-й элемент обладает тем преимуществом, что он явно отличается по своим свойствам от урана, так что их сравнительно легко разделить. Такое химическое разделение происходит гораздо проще, чем трудоемкое отделение изотопов урана-235 и урана-238. Чтобы предпринять разделение в лаборатории, а затем - как предусмотрено - в производственном масштабе, безусловно, необходимо было заранее установить свойства этого искусственного элемента. Однако для аналитических химических исследований требовались весомые количества вещества. Откуда их взять? Ведь речь идет об элементе, которого нет на Земле. Или это все же не так?
В течение 1942 года американцы весьма серьезно занимались поисками трансуранов 93 и 94 в природных минералах. Трудоемкая переработка урановых руд из Колорадо и Нью-Мексико дала отрицательный результат. Если 94-й элемент там вообще есть, утверждали американские специалисты, то содержится он в рудных концентратах в соотношении 1 : 1014 что говорит о невозможности его выделения. До последнего момента возлагали большие надежды на урановую смоляную руду из района Большого Медвежьего озера в Канаде. В руде, которая содержит сорок различных элементов, надеялись найти трансураны.
Однако и эта надежда не оправдалась.
Единственное, что нашли, так это подходящее название для нового элемента. Снова представилась возможность провести параллель с астрономией. В 1930 году произошло знаменательное событие: по ту сторону Нептуна была открыта новая планета - Плутон. Элемент 94 назвали в честь новой планеты плутонием. В таком наименовании заключено предзнаменование: ведь 94-й элемент, как следует из классической мифологии, носит имя бога смерти. Как же шло дело с попытками получения заметных количеств плутония? В циклотроне были получены лишь микрограммовые количества - тысячные доли миллиграмма. Использование циклотрона для синтеза искусственных элементов означало большой технический прогресс. Было высчитано, что с обычными радиево-бериллиевыми источниками нейтронов на получение 0,15 г плутония из урана потребовалось бы 200 лет. Такое же количество в циклотроне можно было получить за два дня, если использовать нейтроны, выбиваемые разогнанными дейтронами из бериллиевой мишени.
В августе 1942 года американцам Каннингему и Вернеру удалось получить около 1 мкг плутония. Через месяц, 10 сентября 1942 года, впервые было взвешено видимое количество искусственно изготовленного элемента: 2,77 мкг оксида плутония. Для этого специально были сконструированы микровесы с кварцевой нитью. В конце 1942 года уже имелось 500 мкг - полмиллиграмма соли плутония. Это количество слишком мало даже для того, чтобы изготовить булавочную головку.
Поразительна разработанная Каннингемом техника работы, ставшая основой ультрамикроанализа; необходимость работы с микроколичествами вещества заставила использовать совершенно новые формы искусства химического эксперимента.
Лабораторный стол уступил место микроскопу. Почти все манипуляции пришлось проводить под стереомикроскопом. Обычные лабораторные стаканы и Колбы сократились до размеров тончайших капилляров с внутренним диаметром от 0,1 до 1 мм. В них помещали объемы жидкости от 10-1 до 10-5 мл и проводили химические реакции. Об этих работах значительной научной ценности по выделению и изучению 94-го элемента научный мир узнал только в послевоенные годы, когда с них была снята завеса секретности.
Основываясь на
свойствах плутония, изученных ультрамикрометодами, был сделан смелый шаг:
проектирование и постройка промышленных установок для изготовления и очистки
этого делящегося элемента в масштабе 1:1000 000 000. Работа была начата в США в
то время, когда еще не функционировал ни один реактор для синтеза плутония.
Последний американцы запустили лишь 2 декабря 1942 года: под трибуной
спортивного стадиона в Чикаго Энрико Ферми успешно поджег урановый котел,
состоящий из слоев 6 т урана, 36,6 т оксида урана и 315 т чистейшего графита.
В ход была пущена самоподдерживающаяся цепная реакция: управляемая, а
следовательно, не разрушительная, как того боялись. Впервые "урановая
машина" вырабатывала энергию, хотя сначала только 200 Вт. Также впервые в
урановом реакторе образовывался элемент плутоний: элементы в реакторе
искусственно превращались друг в друга в весомых количествах.
Для атомной промышленности США удачный эксперимент Ферми означал последний этап к осуществлению производства плутония в Хэнфорде. С невероятной поспешностью были установлены три гигантских урановых котла на южном берегу реки Колумбия. Атомный реактор Ферми работал, как часы. Когда в годы войны эти реакторы были запущены на полную мощность, они помимо большого числа радиоактивных изотопов вырабатывали ежедневно около 1,5 кг плутония. Кроме того, в процессе ядерного деления выделялось много энергии, которая не находила применения и лишь нагревала воду реки.
Когда американскому журналисту Вильяму Лоуренсу, автору нескольких популярных брошюр по атомной энергии, разрешено было побывать в Хэнфорде, увиденное поразило его. По его словам, не было никакого признака того, что в этом гиганте, построенном рукой человека, свирепствует космический огонь; что в его утробе происходит тот процесс созидания элементов, который, вероятно, протекал миллионы лет назад, когда возникали основы нашего мироздания. Все казалось каким-то нереальным. Установка работала в неестественной тишине, в которой можно было услышать биение собственного сердца.
Ферми использовал для своего реактора графит в качестве замедлителя. Немцы, как известно, предпочли тяжелую воду. Однако таким путем они не достигли цели. К тому же фашистская Германия была близка к гибели и не располагала теми мощными материальными и техническими средствами, которые имелись в США. Немецкая модель урановой машины не достигла критической массы; нельзя было получить 94-й элемент. Все другие работы по выделению атомного взрывчатого вещества уран-235 тоже не были закончены до конца войны. К счастью для народов, гитлеровская атомная бомба так и осталась страшным видением. Американцы же успели довести свое черное дело до конца: первая атомная бомба, сброшенная 6 августа 1945 года на Хиросиму, была именно из плутония.
3. Следующие
трансурановые элементы
Вслед за нептунием и плутонием американцы сумели получить в реакторах были получены элементы №95 - америций (назван в честь страны открытия), №96 - кюрий (назван в честь первых исследователей явления радиоактивности Пьера и Марии Кюри), №97 - берклий (назван в честь города, где произошло его открытие) и №98 - калифорний (назван в честь штата, где расположен г.Беркли). Их изотопы сегодня уже нашли практическое применение.
Когда в 1966 году американское космическое ведомство запустило лунный зонд "Сарвейор", имевший на своем борту атомную энергетическую установку с 7,5 г кюрия, то лишь посвященные знали, как трудно было получить такое количество кюрия. Пришлось в течение четырех месяцев в мощном реакторе бомбардировать нейтронами 77 г америция-241 стоимостью в 20 000 долларов, а затем перерабатывать полученные продукты.
Еще более дорогостоящими оказались опыты американцев по получению транскюриевых элементов, прежде всего желанного калифорния-252. Для его ступенчатого синтеза надо, чтобы каждый атом плутония, полученный в реакторе, захватил суммарно 13 нейтронов. Однако при этом образуется множество других делящихся нуклидов, так что максимальный выход калифорния-252 составляет 0,05%. Следовательно, из 1 кг плутония после многолетнего облучения в мощном реакторе можно получить в лучшем случае 0,5 г калифорния-252. Однако для поддержания мощности такого специального реактора требуется ежемесячно менять дорогостоящие стержни из урана-235. Этим объясняется колоссальная цена на 1 г калифорния: 10 миллионов долларов.
В 1972 году США располагали этим одним граммом. Для того, чтобы его можно было перевозить, потребовался специальный резервуар. Такая "упаковка" выглядела необычно: диаметр ее около 3 м, высота 4 м и масса 50 т. Вот в таком "бронированном сейфе" с многослойными стенками из парафина, свинца, бетона и стали и хранится сокровище из калифорния стоимостью в 10 миллионов долларов. Однако все это устройство - не для защиты от воров, а для защиты от радиации. Без такой "упаковки" этот грамм калифорния стал бы смертельно опасным из-за испускания нейтронов и вызвал бы повсюду радиоактивность, индуцированную нейтронами.
С июля 1969 года по июль 1971 года в обоих мощных реакторах - в Ок-Ридже и Брукхэвене (США) - получены следующие количества трансуранов: 50 г кюрия-244; 54 мг калифорния-252; 0,4 мг эйнштейния-253; 5 . 108 атомов фермия-257 (невесомое количество).
Неудивительно, что при таких скудных выходах ведутся поиски других методов производства трансуранов - более быстрых, дешевых, выдающих продукт в больших количествах. Американцы, искони обладающие понятием "большого бизнеса", создали грандиозный план: ожидать 5 или 10 лет получения 1 г калифорния они не в состоянии; они хотели одним махом получить 10 г... с помощью взрыва атомной бомбы! При ядерном взрыве в течение доли секунды достигается поток нейтронов на несколько порядков больший, чем в ядерном реакторе.
До 1 ноября 1952 года в Тихом океане находился идиллический островок, называемый Элугелаб. Он относился к атоллу Эниветок из группы Маршальских островов. В тот день остров Элугелаб прекратил свое существование. Он взлетел на воздух в результате первого американского термоядерного испытания под кодовым названием "Майк". Сила взрыва составила 3 Мт, то есть три миллиона тонн тринитротолуола. Это соответствует общей взрывной силе всех бомб, сброшенных во вторую мировую войну, и примерно в 200 раз превышает взрывное действие хиросимской бомбы! Ударная волна взрыва была зарегистрирована сейсмическими станциями всего мира; это было первое землетрясение, спровоцированное человеком. Там, где находился остров Элугелаб, на дне Тихого океана зиял кратер диаметром 1,5 км и глубиной 150 м.
Беспилотные самолеты пролетали сквозь взрывное облако и собирали радиоактивную пыль для научных исследований. Позднее были переработаны центнеры коралловой породы с окружающих островов. В этих остатках термоядерного взрыва в декабре 1952 года американские ученые нашли 99-й элемент, а спустя некоторое время, в марте следующего года - 100-й элемент, теперь именуемые эйнштейнием и фермием.
Нейтронная молния "Майк'а" - нейтронную дозу оценивают в 1022 нейтронов/см2 -произвела превращение элементов нового рода. При этом из урана поджигающей бомбы образовались изотопы урана с необычайно большим содержанием нейтронов, которые, многократно претерпев бета-распад, превратились в конце концов в изотопы элементов 99 и 100. Если бы этот процесс захотели провести в исследовательском реакторе с интенсивностью потока в 1013 нейтронов/см2 то потребовалось бы 30 лет, чтобы достичь требуемой дозы нейтронов. "Майк" совершил это в миллионную долю секунды.
После некоторых предварительных опытов в июле 1969 года американцы решились на грандиозный эксперимент, получивший кодовое название "Хатч ". Место действия - испытательный полигон департамента атомной энергии США для подземных испытаний ядерного оружия в Неваде. Местность там в результате многочисленных ядерных взрывов выглядит как лунный кратер. В эксперименте "Хатч" на 600-метровой глубине взорвалась атомная бомба взрывной силы в 2000 кт тринитротолуола и образовала подземный кратер. За 10-7 с бомба выделила 4,5 . 1025 нейтронов/см2 - в 10 миллиардов раз больше, чем мощнейший реактор.
Когда спустя некоторое время снизилась радиоактивность, первые партии рискнули на планерах высадиться на месте взрыва, чтобы подготовить почву для бурения. Редкие трансураны находились в застывшем конгломерате сплавившихся пород весом около 150 000 т. Чтобы их добыть, потребовались бы "горнорудные" разработки. Это - безнадежное предприятие, и потому американцы ограничились буровой пробой в 100 г. Из нее они извлекли 1010 атомов фермия-257. Это количество в сто раз превышало полученное до сих пор в мощном реакторе. По приближенной оценке всего при "Хатч"-взрыве было синтезировано 0,25 мг фермия-257, которые, увы, как и те вожделенные 10 г калифорния, оказались рассеянными в твердой породе. Они и сегодня еще находятся там, если только не распались.
Как стало известно, если уран – это последний элемент, существующий на Земле, то фермий-257 – это последний и самый тяжелый изотоп, существующий в природе. Во время вспышек нейтронных звезд образуются гигантские нейтронные потоки, под воздействием которых образуются элементы вплоть до фермия-257. Но более тяжелые элементы образоваться не могут: при поглощении еще одного нейтрона фермий-257 превращается в фермий-258, который имеет время жизни лишь 0,3 микросекунды, после чего подвергается спонтанному делению. Получить более тяжелые изотопы с помощью бомбардировки нейтронами невозможно – для этого требуются уже иные методы, о которых будет рассказано в следующем параграфе.
Сегодня главным источником для получения синтетических элементов является облученное ядерное топливо (ОЯТ). Из остаточных растворов после переработки отработанного ядерного горючего получают технеций и прометий, а также искусственные трансураны. На долю нептуния, америция и кюрия приходятся соответственно количества 500, 100 и 20 г на тонну выгорания. Таким образом, регенерационные установки в атомной промышленности служат не только для необходимого устранения опаснейших продуктов деления, но и для получения ценных нуклидов.
Однако превращение элементов в атомном реакторе приводит не только к радиоактивным нуклидам. Из отходов уранового реактора можно получить в качестве продуктов деления высококачественные благородные металлы - палладий и родий,- которые и сегодня считаются весьма ценными. Американские экономисты полагают, что их извлечение значительно рентабельнее; например, в 1980 году с радиоактивными отходами будет потеряно столько же родия, сколько его получили из природных источников с помощью весьма трудоемких процессов.
Чем не алхимия: из урана получить палладий и родий, более ценные, чем исходное вещество.